WHAT YOU WILL GAIN:
• LIVE online flexible learning
• Personalised tuition
• Attend anywhere – You only need Internet
• Highly interactive video and web conferencing – LIVE sessions online
• Industry experienced lecturers
• Practical job-focused courses
• Valuable National Certificates leading to your National Technical Diploma in one of the following disciplines:
 – Electrical Engineering
 – Electronics Engineering
 – Industrial Instrumentation Engineering
 – Mechanical Engineering
• IDC is accredited to offer the qualifications N4, N5 and N6**

For more information or to apply, please contact
idc@idc-online.ac.za or call us on 011 024 5520/1/2/3/4/5
or visit www.idc-online.ac.za

*IDC Technologies reserves the right to cancel or postpone courses if required student enrolment numbers are not achieved.

ACHIEVE YOUR OWN
N4, N5 & N6 CERTIFICATES
leading to National N Diploma (Engineering)*

Accreditation number QCTO NATED/15/0127

• Electrical Engineering
• Electronics Engineering
• Industrial Instrumentation Engineering
• Mechanical Engineering

STUDY ONLINE AT YOUR HOME/OFFICE OR CLASSROOM-BASED

<table>
<thead>
<tr>
<th>START DATES*</th>
<th>N4</th>
<th>N5</th>
<th>N6</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017 TRIMESTER 1</td>
<td>16 January</td>
<td>16 January</td>
<td>16 January</td>
</tr>
<tr>
<td>TRIMESTER 2</td>
<td>8 May</td>
<td>8 May</td>
<td>8 May</td>
</tr>
<tr>
<td>TRIMESTER 3</td>
<td>11 September</td>
<td>11 September</td>
<td>11 September</td>
</tr>
<tr>
<td>2018 TRIMESTER 1</td>
<td>15 January</td>
<td>15 January</td>
<td>15 January</td>
</tr>
<tr>
<td>TRIMESTER 2</td>
<td>14 May</td>
<td>14 May</td>
<td>14 May</td>
</tr>
<tr>
<td>TRIMESTER 3</td>
<td>10 September</td>
<td>10 September</td>
<td>10 September</td>
</tr>
</tbody>
</table>

* IDC Technologies reserves the right to cancel or postpone courses if required student enrolment numbers are not achieved.

Spread the fees
– Payment options available

Technology Training that Works
Who Should Complete this Programme

The National N Diploma pathway is designed to enhance the careers of technical operators, artisans, trade-persons, technicians and more. An important outcome of this programme is to provide you with core engineering skills so that you can grasp opportunities to enhance your career and to benefit your employer. In the engineering team the technician may have to act as a supervisor in order to interpret and pass on the instructions received from senior personnel.

Successful graduates with the National N Diploma should be able to find employment in the sectors below:

- Energy (for example: Eskom, Mines)
- Transport (e.g.: PRASA)
- Telecommunications (e.g.: Telkom, MTN, Vodacom)
- Municipalities
- Chemical Industries (e.g.: Sasol)
- Motor Manufacturing/Automotive Industry
- Aeronautical/Aerospace Industry

Practical Exercises, Remote Labs and Assignments

You will participate in practical exercises using a combination of remote laboratories and simulation software, to ensure you get the requisite hands-on experience. This will give you a solid practical exposure to the key principles covered in the programme and ensure you are able to put theory into practice.

Presentation Format

The programme features real-world applications and uses a blended approach involving interactive online webinars, simulation software and self-study assignments with a mentor on call. Each N4, N5, N6 programme will be delivered part time over 6 months. Presentations and group discussions will be conducted using a live, interactive software system. For each topic you will have an initial reading assignment (which will be delivered to you in electronic format in advance of the online presentations).

There will be coursework or problems to be submitted and in some cases there will be practical exercises, using simulation software and remote labs that you can easily do from your home or office. You will have on-going support from the lecturers via phone, fax and email.

Benefits of Live eLearning

- Attend lessons in a live, virtual classroom with your lecturers and fellow students
- Upgrade your skills and refresh your knowledge without having to take valuable time away from work
- Receive information and materials in small, easy to digest sections
- Learn from almost anywhere - all you need is an Internet connection
- Have constant support from your programme lecturers and coordinator for the duration of the programme
- Interact and network with participants to gain valuable insight into business practices
- Learn from industry experts
- Live interactive webinars, not just a ‘book on the web’
- Revisit recordings of webinars whenever and as often as you wish

Visit our website: www.idc-online.ac.za or call us on 011 024 5520/1/2/3/4/5

Time Commitment for Each Certificate

You have numerous options with IDC Technologies.

1. Already passed some subjects?
 If you’ve already passed some subjects at Level 4, 5, or 6, you can study the remaining subjects as they are offered in our timetable. Just enrol for the subjects you need to complete the level. Contact us to find out when the specific subjects that you need are being offered.

2. Starting from the beginning?
 Each N level will take either 3 months (one trimester) or 6 months - your choice. This means that studying all 3 N levels (N4, N5 and N6) will take you a total of 9 months (“full time”) or 18 months (“part time”). Within each level a minimum of 4 subjects are required. Each subject requires 30 hours’ attendance over a 10-week trimester (this attendance can be via live online lectures, tutorials and workshops). A minimum of 15 hours per subject per trimester is recommended for self-study.

“Part-time”

This option is ideal for those already working in industry, such as artisans and other mature-age students. We will offer you two subjects per 10-week trimester, therefore it will take 2 trimesters to complete each N Level. Each subject requires 2 x 1.5 hour sessions (live online lectures, tutorials, workshops) each week, therefore two subjects means 4 x 1.5 hour sessions – 6 hours of sessions each week plus your own private study of 1.5 hours per subject per week.

“Full Time”

Full time study can mean that you’ll complete all 3 N Levels in just 3 trimesters. Your workload is double that of “part-time” students: four subjects per 10-week trimester, requiring a total of 12 hours of sessions each week, plus 1.5 hours private study per subject per week.

You will be required to attend at least 80% of the sessions. This is possible from any location provided you have an internet connection. All sessions are recorded and can be reviewed later at your convenience.

IDC will support you and will monitor your progress. You will need to achieve a minimum of 40% per subject (tests and assignments) to be able to write the National Examination.

Live Webinars

During the programme you will participate in live interactive sessions/webinars with the lecturers and other participants. Recordings of the live sessions are also made available for students.

Dedicated Coordinator to Handle your Queries

We know that studying is a tough business. On all our programmes we provide a dedicated coordinator who will help you through the hassles and stresses of study and promptly answer all your queries. You will also have quick access to a lecturer who can handle any day-to-day problems.
Entrance Requirements

To apply for the N4 Certificate, students need to be in possession of a Senior Certificate with Maths and Science or a N3 Certificate with Maths and Science.

Alternative criteria for entry include:

- **N5** – Relevant N4 Course
- **N6** – Relevant N5 Course

To apply to study for the N4 Certificate, you’ll need your Senior Certificate [Matric / Grade 12], with Maths and Science, each at a pass rate of 40% or higher, OR your N3 Certificate with Maths and Science.

To apply to study the N5 or N6 Certificates, you’ll need to have the N certificate at the prior level [N4 for N5, N5 for N6]. On successful completion of all 3 certificates you will have developed a good background in engineering fundamentals. Then you can use on-the-job experience for at least 2 years in your chosen stream to earn your National N Diploma (Engineering).

Your pathways beyond the National N Diploma

Students who successfully complete the National N Diploma may be eligible to apply for enrolment in further study at Engineering Institute of Technology (EIT) towards the Bachelor of Science. The Bachelor’s programme provides a pathway right through to a Master of Engineering degree. Please see diagram above. EIT is a sister organisation to IDC.

Graduates with the National N Diploma who complete required additional subjects and have gained the requisite experience may be eligible to apply for the Government Certificate of Competency. Contact your IDC advisor for more detail about this pathway.

Graduates with the National N Diploma may choose to apply to ECSA for registration as an Engineering Technician.

We are Flexible With Your Commitments

We recognise that personal circumstances can make it difficult to complete the programme in the time available. We will be flexible about the time you require to complete the programme. You can “pause and restart” by joining a subsequent intake [a re-joining fee may apply].

A National Certificate or result slip will be issued for each complete programme or subject successfully completed.

Hardware and Software Requirements

All you need in order to join the webinars once accepted in the programme is an adequate Internet connection, a computer, speakers and, if possible, a microphone. The software package and setup details will be sent to you prior to the start of the programme.

Gain cutting edge expertise with this prestigious, practical National Technical Diploma
Programme Fees

Your programme fees include weekly webinars and tutorials with leading engineering and technical experts. The table below shows the two fee payment options for each N certificate: upfront or over 6 monthly instalments. A 5% fee applies for the monthly payment option.

The Department of Education fee for each exam (one per certificate level) is R500.00.

<table>
<thead>
<tr>
<th>COST AND PAYMENT OPTION</th>
<th>N4 – N6 LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost Per N-Level:</td>
<td>R8 600.00 (4 subjects)</td>
</tr>
<tr>
<td>Cost Per Subject:</td>
<td>R2 150.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Payment Options Offered Per N-Level:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Registration fee</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>R100.00</td>
</tr>
</tbody>
</table>

External Examination

External examinations are written in March – April; July – August and November each year according to the Department of Higher Education and Training, Examination Timetable. These examinations are administered by the Department of Higher Education and Training. Successful students receive a National Certificate issued by the Department of Education after each course completed.

IDC students can write examinations at any examination centre closest to their residences. Once students are registered with IDC they inform IDC when they prefer writing the examination and IDC will facilitate the examination registration.

Certification

As you successfully complete each level (4, 5, 6) you will receive a National N Certificate for your chosen stream. After completion of your N6 certificate, followed by relevant and appropriate work experience for 24 months, you can apply for your National N Diploma in one stream:

- Electrical Engineering
- Mechanical Engineering
- Electronics Engineering
- Industrial Instrumentation Engineering

Books Required

You need to budget about R1000 per N4, N5 and N6 certificate for books which you are required to obtain over and above the fees charged for the programme.

In addition, IDC Technologies will provide you with a selection of valuable technical manuals from its library at no cost. Please refer to the specific National Certificate streams in this brochure to see the recommended titles.

About IDC Technologies

IDC Technologies specialises in engineering training and education in the fields of Instrumentation, Process Control, Industrial Data Communications & Networking, Information Technology, Electronic Engineering, Electrical Engineering, Mechanical Engineering, Finance and Project Management. IDC Technologies was founded in 1992 and has built a strong reputation globally as a provider of practical and technical training, delivered to over 500,000 engineers and technicians.

The key objective of IDC Technologies is to provide you with an outstanding practical engineering and technology education from N4 through to Masters Degrees. The finest engineering lecturers and instructors, with extensive real engineering experience in industry, are drawn from around the world to offer you the most valuable experience.

IDC Technologies is a sister company of the well-known and reputable Engineering Institute of Technology (EIT).

5 REASONS TO STUDY WITH IDC TECHNOLOGIES

1. FLEXIBILITY – The unique optional online delivery method allows you to ‘earn while you learn’. You can study whilst still remaining committed to work and family life. It also means that you can participate from any location as long as you have an internet connection, and avoid spending valuable time and expense on travel usually required for attending a campus.

2. EXPERIENCE – for over 25 years, IDC Technologies have trained over 500,000 engineers and technicians throughout the world. Our students range from independent contractors to employees from some of the world’s largest organisations.

3. SUPPORT – throughout your studies you will have access to a dedicated Course Coordinator who is there to support you from start to finish.

4. PATHWAY – IDC Technologies offers students a complete pathway from the N4 certificate through to a Master of engineering.

5. LECTURERS WITH REAL-WORLD EXPERIENCE – Our lecturers are selected from amongst the top engineers/lecturers in their field – worldwide. These presenters are highly skilled at presenting challenging concepts and ideas to students of varying levels and abilities.

To find out more about the immense range of engineering and technical courses offered, visit www.idc-online.com and www.eit.edu.au

Frequently Asked Questions

For answers to common questions such as those below go to www.idc-online.ac.za and click “National Diploma”.

- Is IDC Technologies accredited to run these programmes?
- Will I receive Credits for the different subjects for these programs to study further?
- What is eLearning?
- What do live webinars involve?
Curriculum Structure

Engineering Programmes to be offered at IDC as per Report 191 of DoHE

<table>
<thead>
<tr>
<th>Engineering:</th>
<th>Electrical</th>
<th>Electronics</th>
<th>Industrial Instrumentation</th>
<th>Mechanical</th>
</tr>
</thead>
<tbody>
<tr>
<td>N4 Electrical</td>
<td>1. Electro-Technics</td>
<td>1. Mathematics</td>
<td>1. Industrial Electronics</td>
<td>1. Mechanical Drafting</td>
</tr>
</tbody>
</table>

| N5 Electrical | 1. Electro-Technics | 1. Mathematics | 1. Industrial Electronics | 1. Mechanical Drawing and Design |

For External Examination centres and details, please refer to page 4 of this brochure or visit: www.idc-online.ac.za/engineering-national-technical-diplomas
National Certificate: ELECTRICAL ENGINEERING

You’ll be in demand when you learn the fundamentals of electrical components, equipment and systems used in industry and commerce. These are key sections of this popular program.

Join the next generation of electrical technicians and embrace an intensive yet enjoyable career by embarking on this comprehensive and practical engineering career pathway. Leading electrical engineers and academics present the program.

There is a general shortage of electrical engineers and technicians in many parts of the world due to retirement, restructuring and the rapid growth in new industries and technologies. Many companies comment on how difficult it is to find experienced electrical workers, despite offering attractive salaries.

The aim of this programme is to provide you with core electrical engineering skills to enhance your career and to benefit your employer. In the engineering team the electrical technician may have to act as a supervisor in order to interpret and pass on the instructions received from senior personnel.

CAREER OPPORTUNITIES

After completion of the theoretical part of the National Certificate at level 6, the student may be employed as a learner technician for the period determined by the employer – a minimum of 24 months. After completion of the training period, the student may be appointed as a technician.

People working in the electrical engineering fields require specialised technical skills and knowledge in order to meet the requirements of continually changing environment of the various industries. Students will acquire the technical knowledge and skills that are required in small and medium businesses as well as provide access and mobility into higher-level more specialised occupations.

Qualifying learners at N6 should be able to find employment in the sectors below:

- Energy (for example: Eskom, Mines)
- Transport (e.g. PRASA)
- Telecommunications (e.g. Telkom, MTN, Vodacom)
- Municipalities
- Chemical Industries (e.g. Sasol)
- Motor Manufacturing/Automotive Industry
- Aeronautical/Aerospace Industry

COMPREHENSIVE eBOOKS AND ASSOCIATED DOCUMENTATION

You will receive four of our up-to-date technical eBooks to add to your library. Together these texts contain hundreds of pages of valuable know-how distilled from years of experience in presenting these programs throughout the world.

- Practical Power System Protection for Engineers and Technicians
- Practical Troubleshooting of Electrical Equipment and Control Circuits
- Electrical Maintenance for Engineers and Technicians
- Electrical Drawings and Schematics

To apply please contact idc@idc-online.ac.za or call us on 011 024 5520/1/2/3/4/5
National Certificate: ELECTRICAL ENGINEERING

ENGINEERING: ELECTRICAL

<table>
<thead>
<tr>
<th>N4</th>
<th>N5 (Any 4 of the subjects below)</th>
<th>N6 (Any 4 of the subjects below)</th>
</tr>
</thead>
</table>
| 1. Electro-Technics
• Principles of Electricity
• DC Machines
• AC Circuit Theory
• Transformers
• AC Machines
• Generation and Supply of AC Power
• Measuring Instruments
• Switchgear and Protective Devices
• Solid State Control
• Rectification
• Installation, Care, Operation, Maintenance, Supervision and Inspection of the Above Equipment | 1. Electro-Technics
• DC Machines
• AC Circuit Theory
• Transformers
• AC Machines
• Generation and Supply Of AC Power
• Measuring
• Switchgear and Protective Devices
• Static Control
• Installation, Care, Operation, Maintenance, Supervision and Inspection of Transformers and Protective Devices | 1. Electro-Technics
• DC Machines
• AC Circuit Theory
• Transformers
• AC Machines
• Generation and Supply of AC
• Measuring Instruments
• Switchgear & Protective Devices
• Static Control
• Special Characteristics of Arc-Furnace Transformers, Switchgear and Control Systems, Electrical and Hydraulic |
| 2. Industrial Electronics
• Alternating Current Theory
• Direct Current Theory
• Semi-Conductors (Diodes)
• Power Supplies
• Transistor and Amplifier Devices
• Operational Amplifiers
• Electronic Power Control
• Transducer
• Testing Equipment | 2. Industrial Electronics
• Alternating Current Theory
• Power Supply
• Transistor Amplifiers
• Operational Amplifiers
• Integrated Circuits
• Transducers
• Electronic Phase Control
• Test Equipment
• Oscillators | 2. Industrial Electronics
• Transients
• Transducers
• Ultrasonic
• X-Rays and Radio Activity
• Automatic Inspection and Testing
• Non-Destructive Testing
• Electronic Safety Devices
• Thyristor Power Supplies
• Electronic Power Control
• Programmable Logic Controller (PLC) |
| 3. Engineering Physics
• General Properties Of Matter
• Heat
• Light i
• Light II; Wave Theory, Interference, Wave Length
• Magnetism
• Electricity
• Sound | 3. Engineering Physics
• Thermodynamics
• Sound
• Electricity
• Radioactivity | 3. Engineering Physics
• Differentiation
• Integration Techniques
• Partial Fractions
• Differential Equations
• Applications of the Definite Integral
• Applications Where Differentiation and Integration Techniques are Combined |
| 4. Mathematics
• Equations, Manipulation and Word Problems
• Determinants
• Complex Numbers
• Trigonometry
• Sketch Graphs
• Limits And Differentiation
• Integration | 4. Mathematics
• Limits And Continuity
• Differentiation
• Application of Differentiation
• Integration Techniques
• Application of the Definite Integral
• Differential Equations | 4. Mathematics
• Differentiation
• Integration Techniques
• Partial Fractions
• Differential Equations
• Applications of the Definite Integral
• Applications Where Differentiation and Integration Techniques are Combined |
| 5. Power Machines
• Heating and Expansion of Gases
• Steam Generation
• Condensers
• Condensers Pumps
• Combustion
• Reciprocating Air Compressors
• Governors
• The Gas Turbine | 5. Power Machines
• Thermodynamics
• Steam Generation
• Nozzles
• Steam and Gas Turbines
• Internal Combustion Engines
• Air Compressors
• Refrigeration | 5. Power Machines
• Thermodynamics
• Steam Generation
• Nozzles
• Steam and Gas Turbines
• Internal Combustion Engines
• Air Compressors
• Refrigeration |
National Certificate: ELECTRONICS ENGINEERING

Be at the leading edge of modern engineering with your knowledge of electronics. You’ll learn hot topics such as industrial and digital electronics, industrial instrumentation and communication electronics. Leading electronics engineers and academics present the program.

Join the next generation of electronics technicians and embrace an intensive yet enjoyable career by embarking on this comprehensive and practical engineering career pathway.

Electronics technicians often work in specialist areas, such as biomedical engineering, telecommunications, office equipment or domestic appliance maintenance, industrial instrumentation, advanced manufacturing, aeronautical engineering.

The aim of this programme is to provide you with core electrical engineering skills to enhance your career and to benefit your employer.

CAREER OPPORTUNITIES

After completion of the theoretical part of the National Certificate at level 6, the student may be employed as a learner technician for the period determined by the employer – a minimum of 24 months.

After completion of the training period, the student may be appointed as a technician.

People working in the electronics engineering fields require specialised technical skills and knowledge in order to meet the requirements of continually changing environment of the various industrial sectors. Students will acquire the technical knowledge and skills that are required in small and medium businesses as well as provide access and mobility into higher-level more specialised occupations.

Qualifying learners at N6 should be able to find employment in the sectors below:

- Radio and TV Technician
- Technician: Office Equipment, Photocopier and Fax machine
- Telecommunications Technician
- Instrumentation Technician
- Domestic Appliance Technician
- Cellphone Repairs
- Car Radio Installation
- TV & Aerial Installation

COMPREHENSIVE eBookS AND ASSOCIATED DOCUMENTATION

You will receive four of our up-to-date technical eBooks to add to your library. Together these texts contain hundreds of pages of valuable know-how distilled from years of experience in presenting these programs throughout the world.

- Fundamentals of Industrial Electronics
- Practical Process Control
- Digital Signal Processing
- Best Practice in Industrial Data Communications

To apply please contact idc@idc-online.ac.za or call us on 011 024 5520/1/2/3/4/5
National Certificate: **ELECTRONICS ENGINEERING**

<table>
<thead>
<tr>
<th>N4 (Any 4 of the subjects below)</th>
<th>N5 (Any 4 of the subjects below)</th>
<th>N6 (Any 4 of the subjects below)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Mathematics</td>
<td>1. Mathematics</td>
<td>5. Industrial Instruments</td>
</tr>
<tr>
<td>• Equations, Manipulation and Word Problems</td>
<td>• Limits and Continuity</td>
<td>• Emmission Spectroscopy</td>
</tr>
<tr>
<td>• Determinants</td>
<td>• Differentiation</td>
<td>• Gas Analysers</td>
</tr>
<tr>
<td>• Complex Numbers</td>
<td>• Application of Differentiation</td>
<td>• Calorimetry</td>
</tr>
<tr>
<td>• Trigonometry</td>
<td>• Integration Techniques</td>
<td>• Chromatography</td>
</tr>
<tr>
<td>• Sketch Graphs</td>
<td>• Application of the Definite Integral</td>
<td>• Automatic Control</td>
</tr>
<tr>
<td>• Limits and Differentation</td>
<td>• Differential Equations</td>
<td>• Control Valves</td>
</tr>
<tr>
<td>• Integration</td>
<td>• Applications of the Definite Integral</td>
<td></td>
</tr>
<tr>
<td>2. Industrial Electronics</td>
<td>2. Industrial Electronics</td>
<td>6. Control Systems</td>
</tr>
<tr>
<td>• Alternating Current Theory</td>
<td>• Transients</td>
<td>A. General Theory Of Control Systems</td>
</tr>
<tr>
<td>• Power Supply</td>
<td>• Transducers</td>
<td>• Block Diagram Algebra</td>
</tr>
<tr>
<td>• Transistor Amplifiers</td>
<td>• Ultrasonic</td>
<td>• Transient Response</td>
</tr>
<tr>
<td>• Operational Amplifiers</td>
<td>• X-Rays and Radio Activity</td>
<td>• Bode Diagrams</td>
</tr>
<tr>
<td>• Transducers</td>
<td>• Automatic Inspection and Testing</td>
<td></td>
</tr>
<tr>
<td>• Electronic Phase Control</td>
<td>• Non-Destructive Testing</td>
<td>• Root-Locus Diagrams</td>
</tr>
<tr>
<td>• Test Equipment</td>
<td>• Electronic Safety Devices</td>
<td>B. Practical Control Systems</td>
</tr>
<tr>
<td>• Oscillators</td>
<td>• Thyristor Power Supplies</td>
<td>• Transducers</td>
</tr>
<tr>
<td>3. Digital Electronics</td>
<td>• Electronic Power Control</td>
<td>• Electronic Systems</td>
</tr>
<tr>
<td>• Number Systems and Codes</td>
<td>• Programmable Logic Controller (PLC)</td>
<td>• Electrical Machines and Systems</td>
</tr>
<tr>
<td>• Logic Circuits and Systems</td>
<td>• Systems</td>
<td>• Hydraulic Systems</td>
</tr>
<tr>
<td>• Interfacing Elements and Applications</td>
<td></td>
<td>• Pneumatic Systems</td>
</tr>
<tr>
<td>4. Communication Electronics</td>
<td>4. Communication Electronics</td>
<td>• Test and Testing Equipment</td>
</tr>
<tr>
<td>• Resonating Circuits</td>
<td>• Alternators and Filters</td>
<td></td>
</tr>
<tr>
<td>• Mutual Inductance</td>
<td>• Transmission Lines</td>
<td></td>
</tr>
<tr>
<td>• First Order Lag and Lead Coupling Circuit Response</td>
<td>• Antennas</td>
<td></td>
</tr>
<tr>
<td>• Basics of 4 Terminal Passive Transmission Paths</td>
<td>• Noise</td>
<td></td>
</tr>
<tr>
<td>• Basics of Radio Communication</td>
<td>• Modulation</td>
<td></td>
</tr>
<tr>
<td>A. Radiation of RF by Means of an Antenna</td>
<td>• Demodulation</td>
<td></td>
</tr>
<tr>
<td>B. Modulation</td>
<td>C. Demodulation</td>
<td></td>
</tr>
<tr>
<td>C. Demodulation</td>
<td>D. Block Diagrams</td>
<td></td>
</tr>
<tr>
<td>5. Industrial Instruments</td>
<td>5. Industrial Instruments</td>
<td></td>
</tr>
<tr>
<td>• Pressure and Vacuum Measurements, Including Electrical Methods</td>
<td>• Flow</td>
<td></td>
</tr>
<tr>
<td>• Level Measurement</td>
<td>• Analytical Instruments</td>
<td></td>
</tr>
<tr>
<td>• Flow Measurement</td>
<td>• Control (Hardware)</td>
<td></td>
</tr>
<tr>
<td>• Temperature Measurement</td>
<td>• Temperature Measurement</td>
<td></td>
</tr>
<tr>
<td>• Telemetering</td>
<td>• Telemetering</td>
<td></td>
</tr>
<tr>
<td>• Automatic Control</td>
<td>• Automatic Control</td>
<td></td>
</tr>
<tr>
<td>6. Control Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. General Theory Of Control Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Block Diagram Algebra</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Transient Response</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Bode Diagrams</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Non-Destructive Testing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Automatic Inspection and Testing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Root-Locus Diagrams</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

National Certificate: ELECTRONICS ENGINEERING

ENGINEERING: ELECTRONICS

1. **Mathematics**
 - Equations, Manipulation and Word Problems
 - Determinants
 - Complex Numbers
 - Trigonometry
 - Sketch Graphs
 - Limits and Differentiation
 - Integration

2. **Industrial Electronics**
 - Alternating Current Theory
 - Direct Current Theory
 - Semi-Conductors (Diodes)
 - Power Supplies
 - Transistor and Amplifier Devices
 - Operational Amplifiers
 - Electronic Power Control
 - Transducer
 - Testing Equipment

3. **Digital Electronics**
 - Number Systems and Codes
 - Logic Circuits and Systems
 - Basic Treatment of Interfacing Elements and Applications

4. **Communication Electronics**
 - Network Theorems
 - Vectors
 - Frequency Response
 - Modulation
 - Demodulation
 - Communication Systems
 - Radiowave Propagation

5. **Industrial Instruments**
 - Pressure and Vacuum Measurements, Including Electrical Methods
 - Level Measurement
 - Flow Measurement
 - Temperature Measurement
 - Telemetering
 - Automatic Control
National Certificate: INDUSTRIAL INSTRUMENTATION ENGINEERING

Learn about the tools and techniques that are used to measure, control and monitor today's industrial facilities. This stream places emphasis on the use of industry related techniques and tools such as Programmable Logic Controllers (PLCs), classic and modern control strategies and industry-standard software development tools.

Well trained instrument technicians are in demand due to retirement, restructuring and the rapid growth in new industries and technologies. There is a general shortage of skilled instrumentation engineers and technicians in several parts of the world. Many companies comment on how difficult it is to find experienced instrumentation workers, despite offering attractive salaries.

Join the next generation of instrument technicians and embrace an intensive yet enjoyable career by embarking on this comprehensive and practical engineering career pathway. Leading instrumentation engineers and academics present the program.

The aim of this programme is to provide you with core instrumentation engineering skills to enhance your career and to benefit your employer. An instrument technician will be involved with the practical design, installation and maintenance of electronic digital and pneumatic equipment, control systems, maintenance and problem solving. The calibration of measuring instruments and the optimisation of systems can also be required. In the engineering team the technician may have to act as a supervisor in order to interpret and pass on the instructions received from senior personnel.

CAREER OPPORTUNITIES

After completion of the theoretical part of the National Certificate at level 6, the student may be employed as a learner technician for the period determined by the employer – a minimum of 24 months. After completion of the training period, the student may be appointed as a technician.

People working in the instrumentation engineering fields require specialised technical skills and knowledge in order to meet the requirements of continually changing environment of the various industries. Students will acquire the technical knowledge and skills that are required in small and medium businesses as well as provide access and mobility into higher-level more specialised occupations.

Qualifying learners at N6 should be able to find employment in the sectors below:

- Mining
- Petrochemical
- Marine
- Food and Beverage
- Chemical Industries
- Automotive Industry
- Aeronautical/Aerospace Industry

Other fields that can also be entered are those of sales engineer at an existing supplier of instrumentation equipment or as an entrepreneur, specialising in sales, maintenance, installation or manufacturing.

COMPREHENSIVE eBooks AND ASSOCIATED DOCUMENTATION

You will receive four of our up-to-date technical eBooks to add to your library. Together these texts contain hundreds of pages of valuable know-how distilled from years of experience in presenting these programs throughout the world.

- Practical Instrumentation for Automation and Process Control
- Best Practice in Process, Electrical and Instrumentation Drawings and Documentation
- Fundamentals of Process Plant Layout and Piping Design
- Practical Project Management for Engineers and Technicians

To apply please contact idc@idc-online.ac.za or call us on 011 024 5520/1/2/3/4/5
National Certificate: INDUSTRIAL INSTRUMENTATION ENGINEERING

<table>
<thead>
<tr>
<th>N4 (Any 4 of the subjects below)</th>
<th>N5</th>
<th>N6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Industrial Electronics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Alternating Current Theory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Direct Current Theory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Semi-Conductors (Diodes)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Power Supplies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Transistor and Amplifier Devices</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Operational Amplifiers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Electronic Power Control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Transducer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Testing Equipment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Digital Electronics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Number Systems and Codes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Logic Circuits and Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Basic Treatment of Interfacing Elements and Applications</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Industrial Instruments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Pressure and Vacuum Measurements, Including Electrical Methods</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Level Measurement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Flow Measurement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Temperature Measurement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Telemetering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Automatic Control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Engineering Science</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Kinematics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Angular Motion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Dynamics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Statics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Hydraulics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Stress, Strain and Young's Modulus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Heat</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Mathematics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Equations, Manipulation and Word Problems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Determinants</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Complex Numbers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Trigonometry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Sketch Graphs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Limits and Differentation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Integration</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1. Industrial Electronics</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Alternating Current Theory</td>
<td></td>
</tr>
<tr>
<td>• Power Supply</td>
<td></td>
</tr>
<tr>
<td>• Transistor Amplifiers</td>
<td></td>
</tr>
<tr>
<td>• Operational Amplifiers</td>
<td></td>
</tr>
<tr>
<td>• Integrated Circuits</td>
<td></td>
</tr>
<tr>
<td>• Transducers</td>
<td></td>
</tr>
<tr>
<td>• Electronic Phase Control</td>
<td></td>
</tr>
<tr>
<td>• Test Equipment</td>
<td></td>
</tr>
<tr>
<td>• Oscillators</td>
<td></td>
</tr>
<tr>
<td>2. Digital Electronics</td>
<td></td>
</tr>
<tr>
<td>• Number Systems and Codes</td>
<td></td>
</tr>
<tr>
<td>• Logic Circuits and Systems</td>
<td></td>
</tr>
<tr>
<td>• Interfacing Elements and Applications</td>
<td></td>
</tr>
<tr>
<td>3. Industrial Instruments</td>
<td></td>
</tr>
<tr>
<td>• Flow</td>
<td></td>
</tr>
<tr>
<td>• Analytical Instruments</td>
<td></td>
</tr>
<tr>
<td>• Control (Hardware)</td>
<td></td>
</tr>
<tr>
<td>• Temperature Measurement</td>
<td></td>
</tr>
<tr>
<td>• Telemetering</td>
<td></td>
</tr>
<tr>
<td>• Automatic Control</td>
<td></td>
</tr>
<tr>
<td>4. Mathematics</td>
<td></td>
</tr>
<tr>
<td>• Limits and Continuity</td>
<td></td>
</tr>
<tr>
<td>• Differentiation</td>
<td></td>
</tr>
<tr>
<td>• Application of Differentiation</td>
<td></td>
</tr>
<tr>
<td>• Integration Techniques</td>
<td></td>
</tr>
<tr>
<td>• Application of the Definite Integral</td>
<td></td>
</tr>
<tr>
<td>• Differential Equations</td>
<td></td>
</tr>
</tbody>
</table>

1. **Industrial Electronics**
 - Transients
 - Transducers
 - Ultrasonic
 - X-Rays and Radio Activity
 - Automatic Inspection and Testing
 - Non-Destructive Testing
 - Electronic Safety Devices
 - Thyristor Power Supplies
 - Electronic Power Control
 - Programmable Logic Controller (PLC)

2. **Digital Electronics**
 - Number Systems and Codes
 - Logic Circuits and Systems
 - Interfacing Elements and Applications

3. **Industrial Instruments**
 - Emission Spectroscopy
 - Gas Analyzers
 - Calorimetry
 - Chromatography
 - Automatic Control
 - Control Valves
 - Process Reaction
 - Instrumentation of Plant
 - Explosion Hazard and Intrinsic Safety

4. **Mathematics**
 - Differentiation
 - Integration Techniques
 - Partial Fractions
 - Differential Equations
 - Applications of the Definite Integral
 - Applications Where Differentiation and Integration Techniques are Combined
National Certificate: MECHANICAL ENGINEERING

Become one of the innovators who helps to develop new products and more efficient processes. You’ll learn how to draw and design for engineering, how to make the best use of the right materials to make a product, the fundamentals of mechanotechnics, hydraulics and more.

This programme reflects both present and future workplace needs. It will provide graduates the possibility to be employed within the engineering field with the flexibility to pursue different careers in the broader mechanical engineering field.

Join the next generation of mechanical technicians and embrace an intensive yet enjoyable career by embarking on this comprehensive and practical engineering career pathway. Leading mechanical engineers and academics present the program.

By completing this course you will have the skills and confidence to effectively:

• Evaluate and apply essential methods to technical operational systems
• Analyse and apply acquired knowledge in performing the tasks and solve common problems
• Gather and analyse relevant information, use data to apply theories and principles within engineering related situations
• Execute role and responsibilities by being able to summarize, classify, discuss and estimate application processes required through mathematical concepts, technical and schematic diagrams, computer and technology usage in a range of different contexts
• Communicate with colleagues, clients and members of supervisory/management levels by presenting information reliably and accurately in spoken and written form

The overall aim of this programme is to provide you with core mechanical engineering skills to enhance your career and to benefit your employer. In the engineering team the electrical technician may have to act as a supervisor in order to interpret and pass on the instructions received from senior personnel.

CAREER OPPORTUNITIES

After completion of the theoretical part of the National Certificate at level 6, the student may be employed as a learner technician for the period determined by the employer – a minimum of 24 months. After completion of the training period, the student may be appointed as a technician.

People working in the mechanical engineering fields require specialised technical skills and knowledge in order to meet the requirements of continually changing environment of the various industries. Students will acquire the technical knowledge and skills that are required in small and medium businesses as well as provide access and mobility into higher-level more specialised occupations.

Qualifying learners at N6 should be able to find employment as:

• Plant operations and maintenance personnel
• Designers
• Process technicians
• Mechanical technicians
• Mechanical equipment sales executive
• Pump and mechanical equipment operators
• Contract and asset managers

COMPREHENSIVE eBOOKS AND ASSOCIATED DOCUMENTATION

You will receive four of our up-to-date technical eBooks to add to your library. Together these texts contain hundreds of pages of valuable know-how distilled from years of experience in presenting these programs throughout the world.

• Fundamentals of Mechanical Engineering
• Practical Mechanical Drives (Belts, Chains and Gears) for Engineers and Technicians
• Practical Pumps and Compressors Control, Operation, Maintenance and Troubleshooting
• Practical Fundamentals of Heating, Ventilation and Air Conditioning (HVAC)

To apply please contact idc@idc-online.ac.za or call us on 011 024 5520/1/2/3/4/5
National Certificate: MECHANICAL ENGINEERING

<table>
<thead>
<tr>
<th>Engineering: Mechanical</th>
<th>N4 (Any 4 of the subjects below)</th>
<th>N5 (Any 4 of the subjects below)</th>
<th>N6 (Any 4 of the subjects below)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Conventional Representation of a Single Spur Gear, Spur Gears in Mesh, Square Threads and Helical Springs</td>
<td>• Single and Double-Riveted Lap and Butt Joints. Number, Size and Pitch of Studs or Bolts for Steam Cylinder Covers and Manhole Doors.</td>
<td>• Belt Drives</td>
<td></td>
</tr>
<tr>
<td>• Cam Profiles</td>
<td>• Cotter and Knuckle Joints.</td>
<td>• Pulley and Gear Arms</td>
<td></td>
</tr>
<tr>
<td>• Sectional Drawing</td>
<td>• Piston Rods</td>
<td>• Gears</td>
<td></td>
</tr>
<tr>
<td>• Detailed Drawing</td>
<td>• Friction</td>
<td>• Combined Gear Drives and Gear Boxes</td>
<td></td>
</tr>
<tr>
<td>• Assembly Drawing</td>
<td>• Working Pressure for Bearings and Crossheads.</td>
<td>• Cams</td>
<td></td>
</tr>
<tr>
<td>2. Supervisory Management</td>
<td>• Size of Solid and Hollow Shafts to Transmit a Given Power (Pure Torsion)</td>
<td>• Journal Bearings</td>
<td></td>
</tr>
<tr>
<td>• The functions of management</td>
<td>• Keys and Keyways</td>
<td>• Brakes</td>
<td></td>
</tr>
<tr>
<td>• The basic principles of industrial relations in South Africa</td>
<td>• Couplings</td>
<td>• Couples (Plate, Centrifugal)</td>
<td></td>
</tr>
<tr>
<td>• Training and development of employees</td>
<td>• Belts</td>
<td>• Long Columns and Supports</td>
<td></td>
</tr>
<tr>
<td>• The basic principles of financial management</td>
<td>• Welded Joints</td>
<td>• Lubrication (Greasing)</td>
<td></td>
</tr>
<tr>
<td>• Loss control</td>
<td>2. Strength of Materials and Structures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Quality control</td>
<td>• Forces</td>
<td>4. Mathematics</td>
<td></td>
</tr>
<tr>
<td>3. Mechano-Technics</td>
<td>• Stress, Strain and Factor of Safety</td>
<td>• Differentiation</td>
<td></td>
</tr>
<tr>
<td>• Organisation and Lay-Out of Workshops</td>
<td>• Simple Framed Structures</td>
<td>• Integration Techniques</td>
<td></td>
</tr>
<tr>
<td>• Calculations: Flat, Vee and Conveyor Belt Drivers</td>
<td>• Thin Cylinders and Riveted Joints</td>
<td>• Partial Fractions</td>
<td></td>
</tr>
<tr>
<td>• Metal Cutting Machines: Forces Acting on the Cutting Tools</td>
<td>• Shafts</td>
<td>• Differential Equations</td>
<td></td>
</tr>
<tr>
<td>• Metal Protection</td>
<td>• Strain Energy</td>
<td>• Applications of the Definite Integral</td>
<td></td>
</tr>
<tr>
<td>• Precision Measuring of Machine Parts</td>
<td>• Loading of Beams</td>
<td>• Applications Where Differentiation and Integration Techniques are Combined</td>
<td></td>
</tr>
<tr>
<td>• Bearings</td>
<td>• Bending of Beams</td>
<td>5. Power Machines</td>
<td></td>
</tr>
<tr>
<td>• Gear Drivers</td>
<td>• Long Columns and Struts</td>
<td>• Thermodynamics</td>
<td></td>
</tr>
<tr>
<td>• Hydraulic Systems: Elementary Calculations</td>
<td>• Simple Cases of Temperature Stress</td>
<td>• Steam Generation</td>
<td></td>
</tr>
<tr>
<td>4. Engineering Science</td>
<td>• Testing Machines, Apparatus and Methods</td>
<td>• Nozzles</td>
<td></td>
</tr>
<tr>
<td>• Kinematics</td>
<td>• The Mixing and Placing of Concrete for General Purposes</td>
<td>• Steam and Gas Turbines</td>
<td></td>
</tr>
<tr>
<td>• Angular Motion</td>
<td>3. Mechano-Technics</td>
<td>• Internal Combustion Engines</td>
<td></td>
</tr>
<tr>
<td>• Dynamics</td>
<td>• Epicyclic Gears and Gear Trains</td>
<td>• Air Compressors</td>
<td></td>
</tr>
<tr>
<td>• Statics</td>
<td>• Reduction Gearboxes</td>
<td>• Refrigeration</td>
<td></td>
</tr>
<tr>
<td>• Hydraulics</td>
<td>• Belt Drives and Belt Conveyors</td>
<td>6. Fluid Mechanics</td>
<td></td>
</tr>
<tr>
<td>• Stress, Strain and Young’s Modulus</td>
<td>• Bucket Elevators and Conveyors</td>
<td>• General Introduction</td>
<td></td>
</tr>
<tr>
<td>• Heat</td>
<td>• Rope Haulages and Aerial Ropeways</td>
<td>• Flow In Pipes and the Hydraulic Gradient</td>
<td></td>
</tr>
<tr>
<td>5. Mathematics</td>
<td>• Elevators</td>
<td>• Water Flow in Open Canals</td>
<td></td>
</tr>
<tr>
<td>• Equations, Manipulation and Word Problems</td>
<td>• Rail and Road Traction Calculations</td>
<td>• Advanced Calculations Concerning the Flow of Water Through Orifices</td>
<td></td>
</tr>
<tr>
<td>• Determinants</td>
<td>• Flywheels</td>
<td>• Descriptions and Calculations of Pumps</td>
<td></td>
</tr>
<tr>
<td>• Complex Numbers</td>
<td></td>
<td>• Calculating and Descriptions of Ventilation and Air Conditioning</td>
<td></td>
</tr>
<tr>
<td>• Trigonometry</td>
<td></td>
<td>• Description and Calculations Concerning Water Turbines</td>
<td></td>
</tr>
<tr>
<td>• Sketch Graphs</td>
<td></td>
<td>• Description and Calculations Concerning Pelton Wheels</td>
<td></td>
</tr>
<tr>
<td>• Limits and Differentiation</td>
<td>3. Mechano-Technics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Integration</td>
<td>• Clutches</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Brakes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Line Shafts</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Flywheels</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Reduction Gearboxes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Rail Traction and Vehicle Dynamics</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Balancing</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Kinematics</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1. Program Details

ENGINEERING NATIONAL TECHNICAL CERTIFICATE: N4 □ N5 □ N6 □

PROGRAM NAME: ________________________________

Start Date: ________________________________

Please contact idc@idc-online.ac.za

2. Student Details [One form per student]

STUDENT NAME (First Name, Last Name): ________________________________

JOB TITLE: ________________________________

ADDRESS: ________________________________

SUBURB: ________________________________ PROVINCE: ________________________________ POST CODE: ________________________________

COUNTRY: ________________________________ EMAIL: ________________________________

PHONES (Include Country Code): 1. DAYTIME: ________________________________ 2. MOBILE/CELL: ________________________________

EMPLOYER’S CONTACT NAME (If applicable): ________________________________

EMPLOYER/COMPANY NAME (If applicable): ________________________________

ADDRESS FOR INVOICING (Write “as above” if same): ________________________________

SUBURB: ________________________________ PROVINCE: ________________________________ POST CODE: ________________________________

COUNTRY: ________________________________ EMAIL: ________________________________

PHONE (Include Country Code): ________________________________

INVOICING: ________________________________

INVOICE MY COMPANY □ INVOICE ME □

Should you have more people interested in participating in this program, please contact us on 011 024 5520/1/2/3 or email: idc@idc-online.ac.za

3. Payment Details

Please Note: Prices shown are inclusive of VAT

Should you withdraw within 14 days of the start date, we will refund your payment, however a fee equivalent to 1 monthly instalment will be retained as a cancellation fee.

□ FULL PROGRAM OPTION 1 – PAY UPFRONT – 5% DISCOUNT (Value of R2898.00)

Pay total amount upfront [at least 2 weeks prior to program start] R8600.00 = R__________

□ FULL PROGRAM OPTION 2 – PAY IN 6 INSTALMENTS BY CREDIT CARD (R1505.00 per instalment)

Pay in 6 easy instalments over 6 months. Payment dates will be advised ahead of time.

6 instalments (Total R9030.00) = R__________

□ INDIVIDUAL SUBJECTS – R 2150.00 PER SUBJECT

Subject Name: ________________________________ = R__________

Subject Name: ________________________________ = R__________

Subject Name: ________________________________ = R__________

For more information on payment details please contact us on 011 024 5520/1/2/3

I wish to pay by:

□ ELECTRONIC FUNDS TRANSFER (For Option 1 above only)

□ COMPANY ORDER NUMBER: ________________________________

□ CREDIT CARD

Please charge my: ________________________________

□ VISA □ MASTERCARD □

CARDHOLDER’S NAME: ________________________________

CARDHOLDER’S SIGNATURE: ________________________________

EXPIRY DATE: /

On the reverse of your card is a security number. In order to authorise your card transaction, we require the last 3 digits: ________________________________

If the Cardholder’s address is not the same as shown above please tick this box: ________________________________

If you would prefer us to contact you for your card’s expiry and security code, please tick this box: ________________________________

Fee Code: ________________________________

Please PRINT CLEARLY

NEW FLEXIBLE PAYMENT PLAN:
Pay in monthly instalments to take the pressure off!

Diploma Details

The program fees are per student and include reference manuals, live webinars, assignments, software, program materials sent in electronic format and ongoing support.

You can “pause and restart” by joining a subsequent intake (a rejoining fee may apply). We will allow up to 3 years from your original start date to complete the program.

You can withdraw from the program at any time and receive a statement of attainment for the subjects you have completed. However, successful completion of all subjects will earn you the relevant National Technical Diploma.

CANCELLATION

A fee equivalent to 1 monthly instalment will apply for written cancellations received less than 14 days prior to the start date of the program.

Should students withdraw after IDC has submitted their information to the department for capturing and exam purposes, they will forfeit any amount paid.

CONFIRMATION

Official confirmation of your place will be sent by email within 5 business days of acceptance of your application. Detailed program instructions will be supplied upon start date.

PLEASE NOTE

IDC has no affiliation with suppliers or manufacturers and therefore presents a completely unbiased factual view of the industry.

Instructors may change without notice.

Webinar schedules are subject to change.

Unforeseen technical problems may occur resulting in the cancellation or rescheduling of webinars.

IDC Technologies reserves the right to cancel or postpone courses if required student enrolment numbers are not achieved.

PRIVACY INFORMATION

Please review our privacy policy on the website: www.idc-online.ac.za.

ENQUIRIES

For further information, please phone 011 024 5520/1/2/3.

PLACES ARE LIMITED
— APPLY TODAY!

How to Apply

By Fax: (086) 692 4368
By Mail:
IDC Technologies
Waterfall Business Park, Bekker Road
Elevation Gardens, Elevation Close
Block 2, Ground Floor
Yoma Valley Ext 21
Midrand 1686

By Email: idc@idc-online.ac.za
Via Our Website: www.idc-online.com